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Abstract. We investigate the phase diagram and the segregation kinetics of a system of particles
with three-body interactions on a two-dimensional square lattice. We compare this with the usual
case of pair interactions which have particle–hole symmetry. Our simulations suggest that the
kinetics belong to the same universality class as the symmetric model with pair interactions.

1. Introduction

Many properties of the time evolution of a phase-segregating binary alloy, such as Zn–Al,
following a quench from a high temperature into the miscibility gap are well described by
the corresponding behaviour of simple Ising models with ferromagnetic pair interactions. The
kinetics of such models have been studied extensively on both the square and cubic lattice [1–8].
The phase diagram of these models are inherently even functions of the magnetization,
corresponding in the binary alloy language, to a symmetry in the two components. In this work,
we study the phase segregation kinetics of a lattice gas with pure three-particle interactions in
which there is no such symmetry.

Our model is defined on a square lattice. At each sitei there is a spin variableσi = (−1, 1),
or alternatively in the lattice gas language an occupation variableηi = 1

2 (1 +σi) = (0, 1).
The Hamiltonian of our system is

H(η) = −J6ijkηiηjηk − µ6iηi J > 0 (1)

where〈i, j, k〉 denotes all triplet of sites forming a right triangle in each unit square andµ is
the chemical potential. For the simulations, we used anL × L square lattice with periodic
boundary conditions. This corresponds to having 4L2 terms in the first sum in (1). In terms
of spin variableσi ,H will contain both two- and three-spin interactions as well as a magnetic
field one-spin term.

Before we study the kinetics of phase segregation in this system, we need information
about its equilibrium phase diagram which we describe in the next section.
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2. Equilibrium properties

The Pirogov–Sinai (PS) theory [10] provides a general framework for constructing the low-
temperature phase diagram of a system from information about the ground states of its
Hamiltonian. We can decompose the Hamiltonian on the 2D square lattice into a sum over
terms contributed by each unit square (cell) and then sum over all the cells in the lattice.
Now the problem reduces to finding the ground state configuration of each unit cell; finally
one has to make sure the ground state can be consistently constructed using these unit-cell
configurations. An analysis of the 24 possible configurations shows that forµ < −4J , the
ground state corresponds to all the empty sites (ηi = 0 or σi = −1) and forµ > −4J , all
the sites are occupied (ηi = 1 orσi = 1). At µ = −4J there is a degeneracy with both these
states having the same value of energy, which is zero.

At low temperatures one of two things can happen, one can have equilibrium states which
are close to the ground states or the ground state order is completely destroyed. The PS theory
proves that if there are a finite number of periodic ground states and the Peierls condition [10]
is satisfied, (i.e. the energy of configurations consisting of one ground state in a regionV

surrounded by another ground state outsideV , is proportional to the boundary area ofV ),
then the ground state order is not destroyed. The low-temperature phase diagram will then be
a perturbation about zero temperature and the PS theory provides a method to construct the
exact low-temperature phase diagram of such a system. The two ground states in our model
areG1 with all sites empty andG2 with all sites occupied. Following PS theory, we look at the
free-energy contribution of the low-energy excitations to a certain order. Then the coexistence
line corresponds to the free-energy per-site for the two phases being equal. This gives in our
case, to lowest order in the possible excitations of each ground state, the equation,

exp

(
− 1

T
(12J +µ)

)
+
µ

J
+ 4= exp

(
− 1

T
(µ)

)
+ higher order terms. (2)

Hence, to the first non-trivial order in exp(− J
T
), the critical value of the chemical potential

is given byµ = −4J + J exp(− 4J
T
). Higher orders can be computed in a straightforward but

tedious way to obtain the low-temperature (say up to a half or a third of the critical temperature)
phase diagram. The existence of a maximum temperature for coexistence of phases follows
from the fact that at very high temperature there is a unique equilibrium state. To say something
about the critical temperature in the absence of an exact solution for the model, we use the
mean-field approximation. This ignores all correlations and gives us the free energy as a
function of an order parameter (the average magnetizationm in the spin language) for each
site.m = 1

N

∑
i σi , whereN is the total number of sites. In the lattice gas language the order

parameter is the average density of particles on the lattice given byφ = 1
N

∑
i ηi = 1+m

2 .
The free-energy (per site) in this approximation, is given by

f (m, T ) = T

2
((1 +m) log(1 +m) + (1−m) log(1−m))− J

2
(1 +m)3. (3)

We obtain the critical temperatureTc as the temperature above which there is a unique
minimum of the free energy (3) as a function ofm. This corresponds to the free energy being
a convex function ofm ( i.e. ∂

2f

∂m2 > 0 for T > Tc). The mean field critical temperature is32J
9 .

But as in the Ising case we expect the trueTc to be bigger than the mean field value by about a
factor of two. Below this critical temperature on the coexistence line, there are two equilibrium
states each corresponding to a definite magnetization. Using the mean-field expressions, we
can set up equations corresponding to the coexistence line:

2
f (m+, T )− f (m−, T )

m+ −m− = µ (4)
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Figure 1. The mean-field coexistence line on a chemical potential–temperature plot. Both axesµ

andT are plotted in units ofJ .

2
∂f (m+, T )

∂m
= µ (5)

2
∂f (m−, T )

∂m
= µ (6)

whereµ corresponds to the coexistence chemical potential andm+ andm− the two spontaneous
magnetizations. It does not seem possible to solve analytically for the coexistence line.
It is, however, possible to extract the low-temperature behaviour. This turns out to be
surprisingly close to the exact results obtained using PS theory. We obtain the equation
asµ = −4J + 4J exp(− 4J

T
) up to the leading order in exp(− J

T
). For finite temperatures

belowTc, we solve the equations numerically. This yields figure 1 for the coexistence line
and figure 2 for the order-parameter values (spontaneous magnetizations) corresponding to the
coexistence. The phase diagram clearly has no particle–hole symmetry.

3. Phase segregation kinetics

When a homogeneous system is quenched, i.e. suddenly cooled from a high temperature into
the coexistence region, it becomes thermodynamically unstable and evolves towards a new
equilibrium state, consisting of regions rich in one or the other constituents of the mixture. In
this section we discuss the time evolution of our system following such a quench; identifying
empty (spin down) sites with one component and occupied (spin up) sites with the other
component.

We have carried out extensive simulations of the quenching process for our model, using
the Kawasaki spin-exchange dynamics [11], where the total magnetization is conserved. Our
results consist of 50 independent samples atφ = 0.5, T = 1.0J , 30 independent samples
each atφ = 0.75, T = 0.1J , φ = 0.875, T = 0.1J andφ = 0.5, T = 0.8J . There is
now a good understanding of many aspects of phase ordering in spin systems with two-body
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Figure 2. Mean-field phase diagram on a magnetization–temperature plot. The axisT is in units of
J . The crosses indicate the points inside the coexistence region to where the system was quenched
in our simulations.

Figure 3. Snapshots of the phase segregating system after (a) 4096 MCS and (b)16 384 MCS on
aL = 256 square lattice. Fraction of sites occupiedφ = 0.5, temperatureT = 1.0J . The dark
colour indicates occupied sites and the light regions are empty sites.

interaction Hamiltonians [6–9]. The coarsening domains are characterized at late times, by a
time-dependent characteristic length scale. We can observe this qualitatively in simulations
of our model, if we look at the domains at different times, which appear to be self-similar in
figure 3. A statistical quantity used to quantify this behaviour is the time-dependent structure
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Figure 4. Collapse of the scaled structure functions at different times during the quenching,
φ = 0.5, T = 1.0J .

function. This is defined forN lattice sites, as

S(k, t) = 1/N〈|6eik·rj (σj −m)|2〉 (7)

m = (1/N)6σj = 2φ − 1. (8)

The spherically averaged form of this function has been found, for systems with pair
interactions, to satisfy a scaling relation of the form

S(k, t) ∼ km(t)−dF (k/km(t)) (9)

whered is the spatial dimension of the system. Our observations are in agreement with this
type of behaviour. TheS(k, t) generated in our simulations, at different times collapse on top
of each other (see figure 4), after an appropriate rescaling indicated in equation (9). We obtain
the characteristic wavevectorkm as the first moment of the structure function:

km = 〈k〉 =
∫
kS(k, t)∫
S(k, t)

. (10)

When we compare the scaled structure factor for our model with the usual Ising model [8], we
obtain curves that are identical within the statistical errors.

For sharp interfaces (i.e. when the width of the interfaceε � (km)
−1), Porod’s law predicts

a k−(d+1) behaviour for the tail ofS(k, t) in d dimensions, in the regime where1
R(t)
6 k 6 1

ε
.

In figure 5 we obtain the predicted Porod’s tail [12] for our model in two dimensions.
The characteristic length scale, which is just(2πkm)−1, is expected to grow asymptotically

with time like a power oft :

R(t) ∼ tα. (11)
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Figure 5. Porod’s tail behaviour ofk−3 after 262 144 Monte Carlo steps forL = 256,φ = 0.5,
T = 1.0J .

Figure 6. Growth of the domains on aL = 256 square lattice with the densityφ = 0.5 and the
temperatureT = 1.0J .
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Figure 7. Growth of characteristic length scales for different densities and temperatures on
a L = 256 square lattice: (a) φ = 0.875, T = 1.0J , (b) φ = 0.75, T = 1.0J , (c)
φ = 0.5, T = 1.0J , (d) φ = 0.5, T = 0.8J . The y-axis has been normalized so that the
y-intercept is 0 and thex-axis has been normalized so that the slope is 1.

In figure 6 we determine the growth exponentα by employing a three free-parameter unbiased
best fit of the formR(t) ∼ A + B · tC to the length scales obtained from our simulations.
The unbiased value of the exponent obtained as a result is strikingly close to the value of1

3
predicted by the Lifshitz–Slyozov theory [9].

To check the universal character of the results, we compare the growth of the characteristic
length scales in our model for quenching with different temperatures and with different
densities. In figure 7, we obtain a collapse plot ofR(t) versust1/3 by normalizing the slope
of the data sets to 1 and they-intercept to 0.

In conclusion, for the simple model with pure three-body lattice gas Hamiltonian, we
obtain kinetic behaviour which is very similar to that found for models with pair interactions.
This confirms the expected universal character of phase segregation with particle conservation
diffusive dynamics such as those given by spin-exchanges in our model.

Acknowledgments

We would like to take this opportunity to thank Alex Mazel for very useful discussions. This
work was supported in part by NSF grant and by DIMACS and its supporting agencies the
NSF under contract STC-91-19999 and the NJ Commission on Science and Technology.



6246 B Subramanian and J Lebowitz

References

[1] Kikuchi R and Sato H 1974Acta Metall.221099
[2] Phani M K, Lebowitz J L, Kalos M H and Tsai C C 1979Phys. Rev. Lett.42577
[3] Binder K 1980Phys. Rev. Lett.45811
[4] Gunton J D, San Miguel M and Sahni P S 1983Phase Transitions and Critical Phenomenavol 8, ed C Domb

and J L Lebowitz (New York: Academic)
[5] Furukawa H 1985Adv. Phys.34703
[6] Komura S and Furukawa H (ed) 1988Dynamics of Ordering Processes in Condensed Matter(New York:

Plenum)
[7] Binder K 1991Material Science and Technologyvol 5, ed P Hassen (Weinheim: VCH Verlagsges) ch 7
[8] Fratzl P, Lebowitz J L, Penrose O and Amar J 1991Phys. Rev.B 444794
[9] Lifshitz I M and Slyozov V V 1961J. Phys. Chem. Solids1935

[10] Pirogov S A and Sinai Ya G 1975Theor. Math. Phys.251185
Pirogov S A and Sinai Ya G 1976Theor. Math. Phys.2639

[11] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1954J. Chem. Phys.211087
[12] Tomita H 1984Prog. Theor. Phys.72656


